Identification of heat-responsive genes in carnation (Dianthus caryophyllus L.) by RNA-seq

نویسندگان

  • Xue Li Wan
  • Qiao Zhou
  • Yuan Yuan Wang
  • Wen En Wang
  • Man Zhu Bao
  • Jun Wei Zhang
چکیده

Carnation (Dianthus caryophyllus L.) is an important flower crop, having substantial commercial value as a cut-flower due to the long vase-life and wide array of flower colors and forms. Standard carnation varieties perform well under cool climates but are very susceptible to high temperatures which adversely affect the yield and the quality of the cut-flowers. Despite several studies of carnation contributing to the number of expressed sequence tags (ESTs), transcriptomic information of this species remains very limited, particularly regarding abiotic stress-related genes. Here, transcriptome analysis was performed to generate expression profiles of heat stress (HS)-responsive genes in carnation. We sequenced a cDNA library constructed with mixed RNA from carnation leaves subjected to 42°C HS (0, 0.5, 1, and 2 h) and 46°C HS (0.5, 1, and 2 h), and obtained 45,604,882 high quality paired-end reads. After de novo assembly and quantitative assessment 99,255 contigs were generated with an average length of 1053 bp. We then obtained functional annotations by aligning contigs with public protein databases including NR, SwissProt, KEGG, and COG. Using the above carnation transcriptome as the reference, we compared the effects of high temperature treatments (42°C: duration 0.5, 2, or 12 h) delivered to aseptic carnation seedlings, relative to untreated controls, using the FPKM metric. Overall, 11,471 genes were identified which showed a significant response to one or more of the three HS treatment times. In addition, based on GO and metabolic pathway enrichment analyses, a series of candidate genes involved in thermo-tolerance responses were selected and characterized. This study represents the first expression profiling analysis of D. caryophyllus under heat stress treatments. Numerous genes were found to be induced in response to HS, the study of which may advance our understanding of heat response of carnation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.)

The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds we...

متن کامل

A minimal cost micropropagation protocol for Dianthus caryophyllus L.-- a commercially significant venture.

In tissue culture, high production cost of the products restricts their reach. Though tissue culture is a major strength in floriculture it is marred by pricing issues. Hence, we developed a complete regeneration low cost micropropagation protocol for an economically important floriculture crop, carnation (Dianthus caryophyllus L.). Successful regeneration of carnation from nodal explants on co...

متن کامل

Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure.

Using a combination of approaches, three EIN3-like (EIL) genes DC-EIL1/2 (AY728191), DC-EIL3 (AY728192), and DC-EIL4 (AY728193) were isolated from carnation (Dianthus caryophyllus) petals. DC-EIL1/2 deduced amino acid sequence shares 98% identity with the previously cloned and characterized carnation DC-EIL1 (AF261654), 62% identity with DC-EIL3, and 60% identity with DC-EIL4. DC-EIL3 deduced a...

متن کامل

Antisense ACC Oxidase RNA Delays Carnation Petal Senescence

The phytohormone ethylene is essential for senescence in many fruits and flowers. In the biosynthesis of ethylene in plants, the conversion of S-adenosyl methionine (SAM) to 1-aminocyclopropane1-carboxylic acid (ACC) and the conversion of ACC to ethylene are catalyzed by ACC synthase (ACS) and ACC oxidase (ACO), respectively (Adams and Yang, 1979). Using a cDNA clone representing carnation ACO ...

متن کامل

Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element

A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015